Search results

Search for "light harvesting" in Full Text gives 56 result(s) in Beilstein Journal of Nanotechnology.

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • photocatalysis mechanism outlining several possible targets (i.e., NOx degradation, water splitting, degradation of organic pollutants, and enhancement of electron generation in a solar-cell application). This Thematic Issue highlights recent experimental and theoretical developments in using light harvesting by
PDF
Album
Editorial
Published 13 Jun 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • [71], and environmental remediation via photocatalysis [25]. Bi-based semiconductors, in particular, are thought to be able to surpass the limitation of the solar light-harvesting capacity of TiO2-based photocatalytic materials because of their smaller bandgaps. Because of its highly anisotropic Fermi
PDF
Album
Review
Published 03 Mar 2023

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • absorb LED light irradiation with a light harvesting efficiency of ≈90% and a direct bandgap of 2 eV. The introduction of carbon into the HBN lattice led to a significant change in the electronic environment through the formation of C–B and C–N bonds which resulted in improved visible light activity
  • -responsive material with improved charge carrier density (2.97 × 1019 cm−3). The LED light harvesting properties were analysed through various established characterization techniques and the photocatalysis was verified by eliminating the aqueous phase methylene blue (MB: 93.83%) and phenol (48.56%) moieties
  • agate mortar pestle to form a uniform white mixture. The bandgap could be regulated by the amount of carbon substituted into the lattice sites, with higher concentration of C atoms leading to better light harvesting and electronic properties [17][18]. Thus, the amount of glucose utilized for this study
PDF
Album
Full Research Paper
Published 22 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • Roopakala Kottayi Ilangovan Veerappan Ramadasse Sittaramane Department of Physics, Kanchi Mamunivar Govt. Institute for PG Studies and Research, Puducherry-605008, India 10.3762/bjnano.13.110 Abstract The high light-harvesting ability of quantum dots (QDs) plays an eminent role in the performance
  • lead and cadmium have been used as sensitizers in QDSCs. However, due to the high toxicity and low efficiency, research moved to group I-III-VI QDs such as Cu-In-Se, Cu-In-S, Ag-In-Se, Ag-In-S, Ag-Ga-S, and Ag-Ga-S. Even though their light-harvesting capability is still limited by a high number of
  • , 0.54 V, and 0.64, respectively. Its PCE was calculated to be 4.91%. This PCE is greater than that of the Ag-In-S QD-sensitized QDSCs (2.39%) [15], Zn-Ag-In-S QD-sensitized QDSCs (4.45%) [15], and Zn-Ag-In-Se QD-sensitized QDSCs (3.57%) [16]. This is due to the wide-range light-harvesting capacity of
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • . This gap is essential for improving the material’s light-harvesting capabilities [78][79]. Consequently, in an attempt to improve the photocatalytic efficiency for water purification and other environmental applications, a variety of techniques, such as defect formation, metal/non-metal doping
  • necessary to use a semiconductor with the following characteristics: a bandgap suitable for light harvesting, effective charge carrier separation capabilities, and suitable VB and CB edge potentials [91][92]. It is challenging to meet these requirements with only one single Bi-based photocatalyst
  • increased photocatalytic efficiency was the formation of heterojunctions together with the loading of quantum dots, which enhanced the light-harvesting efficiency and promoted the separation and migration of photogenerated carriers. The fabricated composites followed the S-scheme charge transfer mechanism
PDF
Album
Review
Published 11 Nov 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • cavities, and excellent thermal stability [20][21]. These advantages make it appalling to adsorption [22], gaseous capture/separation [23], sensing [24], and drug release applications [25]. Moreover, some MOFs can be excited under UV or visible light and exhibit light harvesting properties due to ligand
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • reactions. Moreover, LaNiO3 revealed broad absorption in the visible light range [38], so the Ni doping was expected to improve the visible light harvesting of LaFeO3. Accordingly, little literature explored the effect of Ni substitution to LaFeO3 on the performance of photocatalytic Fenton-like reaction to
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • extending the light harvesting range and promoting the separation of photogenerated electrons. A considerable amount of reactive oxygen radicals was produced during the photocatalytic reaction, resulting from the large amount of free surface OH groups. PL, photocurrent response, electrochemical impedance
PDF
Album
Review
Published 21 Jan 2022

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • , during the production process, chemicals that are harmful for the environment and for human life are used. For example, hydrofluoric acid is used to texture the top electrode to improve light harvesting. In this work, and also in recent ones, we report a way to obtain 3D textures on the top electrode by
PDF
Album
Full Research Paper
Published 21 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • (SED) in water, which eventually produces H2 [36][37]. Accordingly, three important factors, that is, light-harvesting ability, mobility of the photogenerated charge carriers, and electron–hole separation efficiency, need to be considered simultaneously to design efficient photocatalysts. Organic
  • photocatalysts with narrow bandgap and high charge carrier mobility could, therefore, facilitate light harvesting and the reduction of protons [38]. In terms of structural design, D–A polymers are a good platform to narrow the bandgap, enhance the charge carrier mobility and promote electron–hole separation
  • and HERs of the CP-based photocatalysts introduced in this review article. Conclusion Donor–acceptor interactions facilitate the ICT effect and decrease the optical bandgaps of D–A polymers. Correspondingly, they improve both charge carrier mobility and light harvesting, which makes D–A polymers
PDF
Album
Review
Published 30 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • electron delocalization, efficient charge separation, favorable retention of the crystal structure, and light-harvesting extension [37]. Here, a new procedure of PCN doping with chlorine will be revealed. The photocatalytic activity of the prepared materials was investigated in a water-splitting reaction
  • measurement. Chlorine doping caused a slight redshift of the emission peak. Moreover, a reduction in the peak intensity was found, indicating a lower recombination rate of the electron–hole pairs, which is attractive in the photocatalytic process [44]. It shows that chlorine doping improves visible-light
  • harvesting with PCN and promotes visible-light photocatalytic activity [55]. To estimate the valence band position of PCN and Cl-PCN, VB XPS spectra were measured and are presented in Figure 8c. Furthermore, the conduction band (CB) position of the samples was calculated from the formula ECB = Eg − EVB, and
PDF
Album
Full Research Paper
Published 19 May 2021

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • acid system is one of the distinct approaches to generate functional DNA architectures [88]. Porphyrins are well-known macrocyclic organic chromophores acting as light harvesting systems that can be efficiently compacted within the spatial arrangements of DNA double-helical assemblies [88]. Meunier [89
PDF
Album
Review
Published 09 Jan 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • decrease in efficiency of only 3.2% for an 88 mm2 Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover
  • applicability for 1–10 mW cm−2 light harvesting, a commonly observed range of light intensity when partial or full cloud cover is present. The durability of these solar cells is expected to be a manageable concern under attenuated light. Conclusion Semitransparent and oxide-free thin films of crystalline Sb2S3
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • :PC71BM active layer presents a broad absorption in the visible range (300 to 750 nm). In all absorption spectra, PTB7 peaks appeared at 630 and 700 nm and PC71BM peaks were observed at 375 and 480 nm, as reported elsewhere [51]. The FeS2 NCs do not contribute to the absorption spectra and the light
  • harvesting due to the low amount added to the PTB7:PC71BM active layer [18]. Yet, the difference in the absorption of the active layers could arise from slight differences in the sheet thicknesses, and some light dispersion is most likely due to the modified optical quality. Figure 5b shows the Fourier
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • ; energy storage; light harvesting; renewable energy; solar cells; The imposing environmental and economic challenges due to climate change have become a major topic of discussion on the global political agenda. Effectively reducing greenhouse gases in the atmosphere and decreasing air pollution in
  • - and microstructures for energy conversion: materials and devices” provides insights into the latest developments in the related fields. Besides a focus on solar-cell concepts [1][2][3][4][5], it also addresses light harvesting by solar fuel production [6][7], and energy storage by batteries [8
PDF
Editorial
Published 26 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • applications can be found in the literature, ranging from molecular sensors [3] over memory devices [4] to light-harvesting structures [5][6][7]. Among all porphyrin compounds, transition-metal porphyrins (TMPPs) are of particularly interest. Because they accommodate a transition-metal atom in the center, the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • , field emitters, battery materials, light harvesting and energy storage devices, catalyst for H2 generation, and drug delivery applications [7][8][9][10][11][12]. Most of the transition metal dichalcogenides (TMDCs) are semiconducting in nature with MX2 type – where M is a metal, M = W, Mo, Sn, Nb, V
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Ultraviolet patterns of flowers revealed in polymer replica – caused by surface architecture

  • Anna J. Schulte,
  • Matthias Mail,
  • Lisa A. Hahn and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2019, 10, 459–466, doi:10.3762/bjnano.10.45

Graphical Abstract
  • strongly absorbing surfaces. Keywords: biomimetics; hierarchical structures; light absorption; light harvesting; light reflection; Introduction The outer epidermal surface of plants, the cuticle, forms the first and crucial boundary to the abiotic environment [1][2]. In most cases, this cuticle is a
PDF
Album
Full Research Paper
Published 13 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • of photo-induced electron–hole pairs and insufficient adsorption of CO2 at the catalyst surface are crucial problems preventing effective catalyst performance and CO2 reduction [11]. An ideal photocatalyst for CO2 conversion should possess a narrow bandgap and good light-harvesting properties, proper
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • harvesting. Keywords: filter; light harvesting; solar cells; upconverting; Introduction One potential way to meet the increasing energy consumption requirements lies in the utilization of solar energy. Solar cells are expected to play an important role in relieving the global energy crisis. Among solar
  • UC effect; however, it does not imitate the actual solar irradiation in practical devices. In the present work, the upconverting NaYF4:Yb3+/Er3+ nanorods were synthesized thorugh a hydrothermal method and their UC effect on NIR light harvesting in a-Si:H solar cell was scrutinized by using a facile
  • nanorods (Figure 4d). The scattering effect changes the propagation direction of light and elongates the propagation path in the photoactive layer of the solar cell, thus enhancing the light harvesting of visible light. Conclusion We have used hexagonal-phase NaYF4:Yb3+/Er3+ (18/2 mol %) nanorods on the
PDF
Album
Full Research Paper
Published 31 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • , high specific surface area, high mass-transport rate, and remarkable light-harvesting properties [17][18]. Generally, the electrochemical anodization process implies that the anodic polarization of a mechanically/chemically prepared Ti sheet induces the growth of TNTs using an etching agent (typically
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • Ziga Lokar Benjamin Lipovsek Marko Topic Janez Krc University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia 10.3762/bjnano.9.216 Abstract A variety of light management structures have been introduced in solar cells to improve light harvesting and further
PDF
Album
Full Research Paper
Published 28 Aug 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • , for instance, high specific surface area, good molecular diffusion/transport, and good recyclability and light harvesting ability. To the best of our knowledge, application of Ag2CO3 nanoparticles coupled with flower-like Bi2MoO6 for photocatalytic degradation of toxic pollutants remains unreported
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018
Other Beilstein-Institut Open Science Activities